
Chichester

Sam Blacker¹, Marilyn Sharp², and Jace Drain³

¹Occupational Performance Research Group, University of Chichester, UK ²U.S. Army Research Institute of Environmental Medicine, Natick, MA ³Defense Science and Technology Group, Melbourne, Australia 5 February 2019

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army or the Department of Defense.

Improve Job Task Performance and/or Reduce MSKI Incidence (Better Job-Person Fit) Optimize Physical Training to Develop the Components of Fitness for PES

Enhance Role-Related

Physical Fitness &

Consider:

- Baseline Fitness
- Resources
- Competing Training Demands

Military Occupational Demands

Components of Fitness and Sex Differences

NATO HFM RTG 269 Combat Integration: Implications for Physical Employment Standards

OTAN

<u>Fitness</u>						
<u>Fitness</u>	<u>Component</u>	<u>Definition</u>	Example Activities			
Aerobic Capacity Capacity Anaerobic Capacity		Ability to sustain sub-maximal low-to-moderate/high intensity activity for a sustained period of time (minutes to hours), typically involving dynamic whole-body activities	Sustained patrolling carrying load (e.g. ≥ 30 kg) or digging a fire trench			
		Ability to sustain intermittent or continuous near maximal or maximal efforts for a short period of time (seconds to minutes), typically involving dynamic whole-body activities	Fire and movement task or a break contact task			
	Muscular Strength	Ability of a muscle group to exert maximal force in a single voluntary contraction (< 5 seconds)	Lifting objects, e.g. a casualty, equipment onto a vehicle. Standing up from kneeling while carrying a heavy load			
	Muscular Endurance	Ability of a muscle group to repeatedly generate an intermittent or continuous moderate-to-high absolute force for a more prolonged period of time (seconds to minutes)	Repetitively lifting and carrying stores or a stretcher casualty evacuation			
Strength	Muscular Power	Ability to exert maximal external force in the shortest possible time (typically less than 1 second)	Breaking down a compound/ building door or jumping over a ditch or low wall			
C.C.	Flexibility	The ability to voluntarily stretch, flex or lengthen parts of the body as far as possible i.e. the range of motion around a joint	Lifting a leg over a fence or bending down to pass under a low obstacle			
	Balance	Maintenance of equilibrium while stationary or moving	Maintenance of a stable firing position			
K Y	Speed	Ability to perform movements in a short period of time	Rapid movement between fire positions			
R //	Agility	Ability to change the position of the entire body in space with speed and accuracy	Hurdling a fence or rapidly changing running direction (e.g. fire and movement task)			
Mobility	Coordination	Ability to synchronise the senses (e.g. sight/hearing) with body parts to move smoothly and accurately	Bringing weapons systems to bear and accurately engaging with the enemy			

BODY FAT 30 % More >> LBM LEGS FEMALE MALE (vo_2) VO₂max Absolute + 15-30 % Absolute VO₂max (vo_2) Relative + 10 % Relative Upper Body Max. Anaerobic Power + 63 % Upper Body Strength + 40-60 % Lower Body Max. Anaerobic Power + 30-40 % Lower Body J{a-Strength + 25-30 % Body weight 1 + 26 %

8 % Taller >>

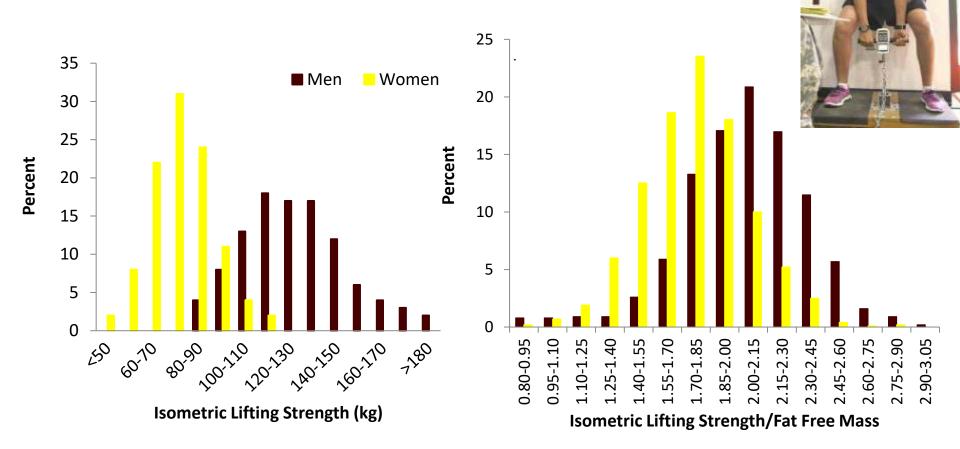
50 % More >>

HEIGHT

LBM ARMS

<< 10 % More

University Chich[®]ester


> OPRG Occupational

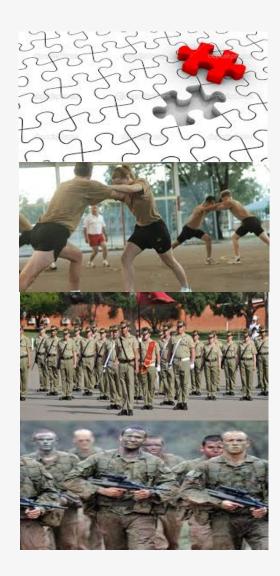
Performance Research Group

Roberts, D., et al, APMN 2016

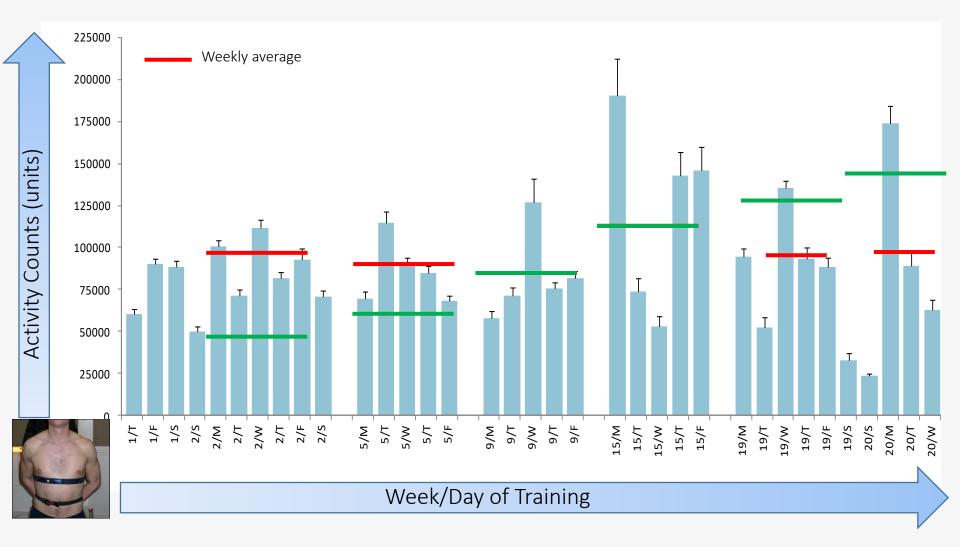
(Blacker S. et al, 2018)

Distribution of Male and Female Soldier Isometric Lifting Strength

There is overlap in strength between the weakest men and strongest women (F/M=63%)

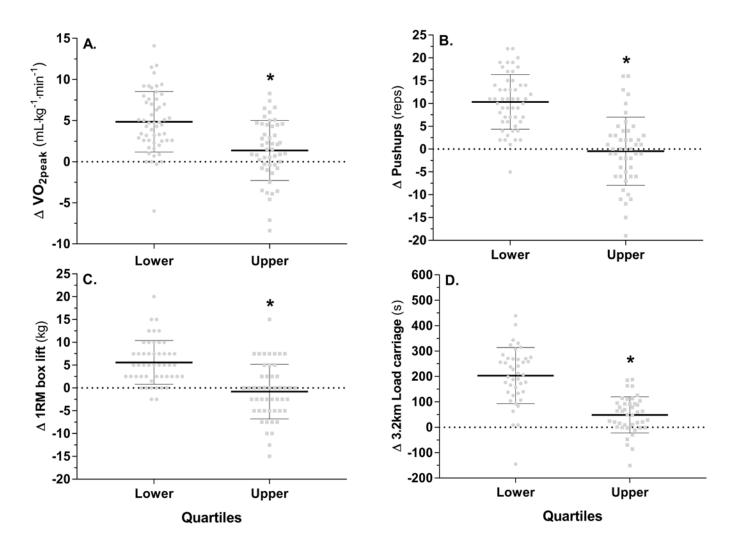

(Sharp, Work 4:80,1994)

Considerations for Integration of Physical Training


Physical training only one piece of the puzzle when optimising physical training outcomes and performance

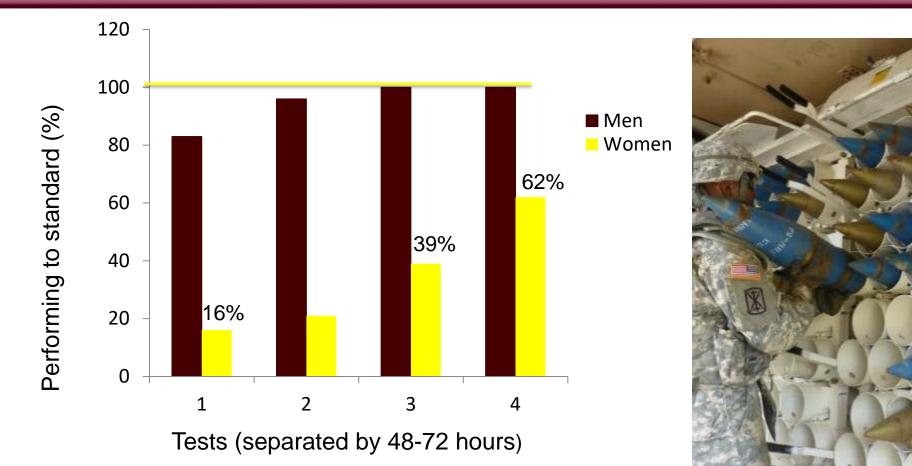
Consider other training activities :

- \rightarrow May influence training adaptations
- Military drill (Carden et al, 2015)
 - Peak vertical impact forces > loaded marching
- Movement mileage (Trank et al., 2001, MSSE)
 - o 177-325 km/7 weeks
 - Typical speed 4.8-6.4 km/h
- Cognitive/psychological stress
- Sleep deprivation
- Nutrition



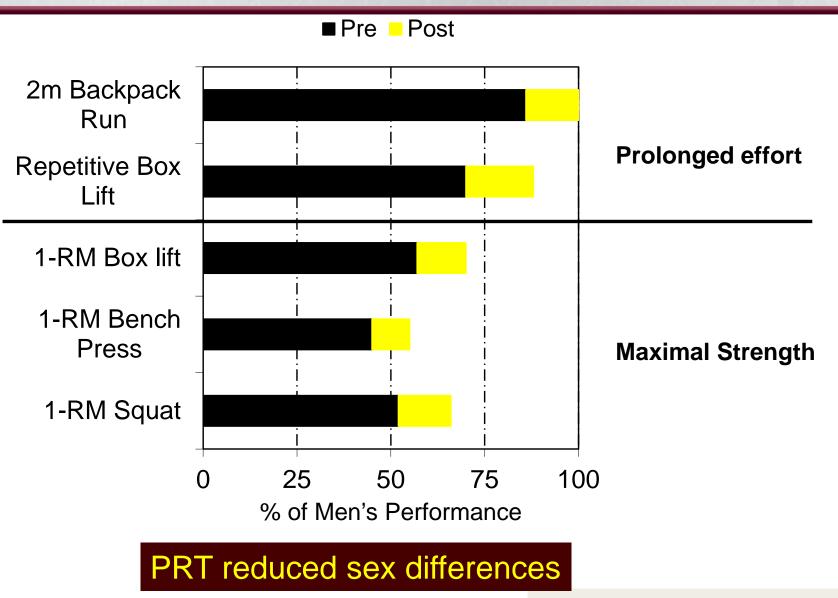
Example Total Training Load During Basic Training

Wilkinson, Rayson, and Bilzon (2008) A physical demands analysis of the 24-week British Army Parachute Regiment recruit training syllabus. *Ergonomics*, 51, 649-662


Avoid focusing only on 'average' responses

Grey dots represent individual data points with mean \pm standard deviation, * denotes significantly different (p<0.05) from lower quartile (Burley et al, 2018, JSAMS).

Effect of Practice on Performance of a Very Heavy Repetitive Lifting and Carrying Task


Practice allows women to acquire and adapt technique to improve their performance

(Foulis, et al., JSCR 2017)

Men: 53% BM

Women: 66% BM

Comparison of Trained Women to Untrained Men

(Kraemer, et al., MSSE 33: 1011, 2001)

USARIA

Comparison of Physical Training, Practice and Familiarization on Performance of a Firefighter PESA

	PESA Baseline-Trial 6 (%∆ time)	% Pass Baseline	% Pass Trial 6	
	Women			
PRT+PESA	31%	9	80	
PESA x 6	23%	28	72	
Control	12%	0	26	
Men				
PRT+PESA	28%	58	100	
PESA x 6	19%	95	100	
Control	10%	78	91	

Five weeks of physical training and practice allowed women to 'overcome' adverse impact

(Guieniak, Ergonomics 2018)

Summary

- Once a PES has been established physical training should be optimized to develop the components of fitness required to achieve the PES.
- Completing the array of military job tasks requires a combination aerobic and anaerobic capacity, muscular strength, endurance and power and mobility. On average, men demonstrate higher levels of these physical attributes (less mobility), but there is overlap between individual men and women.
- Women and men respond similarly to training (% improvement) from their pre-training baseline levels (Kraemer et al., 2001)
- Physical training can enhance a female applicant's ability to pass a physical employment standard assessment (Gumeniak et al., 2018)
- A six-month resistance training program emphasizing upper body strength will prepare women for combat arms occupations (Nindl et al., 2017)
- Once hired, job task performances may provide the necessary training stimulus to ensure continued physical capacity
- For infrequently performed job tasks, or with aging additional fitness training may be necessary to maintain physical capacity
- All military personnel would benefit from well-designed resistance and endurance training

Occupationa Performance Research

hester